

Crew integration & Automation Testbed and Robotic Follower Programs

Bruce Brendle

Team Leader, Crew Aiding & Robotics Technology

Email: brendleb@tacom.army.mil (810) 574-5798 / DSN 786-5798 Fax (810) 574-8684

U.S. Army Tank-Automotive RD&E Center (TARDEC)

Vetronics Technology Area

(AMSTA-TR-R, Mailstop 264)

Warren, MI 48397-5000

30 May 2001

UNCLASSIFIED

Tank-automotive & Armaments

COMmand

TARDEC Crew Reduction Efforts

"Evolving Technologies for Reduced Crew Operation"

Crew integration and Automation Testbed

Objectives:

- Demonstrate the crew interfaces, automation, and integration technologies required to operate and support future combat vehicles.
- Demonstrate crew stations enabling two-crew operation of multi-mission capable, C-130 transportable systems required for the objective force of the Army.

Status:

- In Year #2 of 4-Year ATD Program
- Active Crew Task Analysis IPT between MMBL, ARL and TARDEC
- Active Architecture IPT with STO/ATD Managers
- SMI Working Group Approved with Future Combat Systems

Crew integration and Automation Testbed

Concept Vehicle Shown with Onboard Safety Driver

Demonstrate the crew interfaces, automation, and integration technologies required to operate and support Future Combat Systems

Pacing Technologies:

Decision Aids

Soldier-Machine Interface

Embedded Simulation

Electronics Architecture

Warfighter Payoffs:

- Enhanced performance, and survivability of the crew.
- Potential for reduced crew size (smaller, more transportable vehicles with lower logistics).
- Mission rehearsal capability

CAT ATD Exit Criteria

- Increase crew task efficiency, or reduce the number of crew personnel.
 - ▶ Cover 100% of fight (19K), scout (19D), & carrier (11M) crew tasks with additional tasks of controlling UAV's and UGV's performed with two crew members.
- In-Vehicle crew training capability.
 - Provide mixed, live-virtual simulation of vehicle in training exercises
- Increase software reuse.
 - Package 500K SLOC for reuse through APIs
- Increase architecture performance.
 - Provide 1000 Hz control loop for critical real-time tasks

CAT Workload IPT Process and Product Schedule

Robotic Follower (RF) Evolution

Robotic Follower ATD

Objectives:

- Develop, integrate and demonstrate the technology required to achieve unmanned follower capabilities for future land combat vehicles.
- Maturation & demonstration of robotics technology required for early insertion into Future Combat Systems.

Status:

- In Year #1 of 5-Year ATD Program
- Cooperative Program with Army Research Laboratory
- ► Active Architecture IPT with STO/ATD Managers
- Customer: TRADOC System Manager for Future Combat Systems

Robotic Follower ATD

Mature & Demonstrate Robotics Technology Required for Early Insertion into FCS

Pacing Technologies:

Semiautonomous Perception

Soldier-Robot Interface

Intelligent Situational Behavior

Leader-Follower Technology

Solution Approach

- Manned leader "proofs" path to reduce perception & intelligence requirements
- Rapidly mature & integrate perception technology to enable higher speed & enhanced decision making capabilities
- Successively demonstrate maturing capability for FCS

Robotic Follower Exit Criteria

		Speed on	Speed X-				Obstacle
		Primary Road -	Country -		Max Time	Separation -	Detection -
Metric		(kph)	(kph)	Range - (km)	Delay - (hrs)	(m)	(m)
Definition		Sustained speed on	Open & rolling,	Distance	Time between	Distance between	Size of non-
		paved or improved	highly	follower can	lead vehicle and	the lead and	engineered or
		road with firm base.	trafficable for	travel using	follower vehicles	following vehicles,	camouflaged
		Followers to stay in	equivalent	onboard	crossing same	dependent on	obstacles system
		proper lane starting	manned system.	intelligence.	piece of terrain	communication	can detect.
		in 2003.				range and latency.	
Current						Min: 50	Positive: .5
(Demo IIIb)		30	15	160	1	Max: 500	Negative: 1x2x2
April, 2003 ¹						Min: 20	Positive: .3
(XUV chassis)		55	30	160	12	Max: 2 km	Negative: 1x2x2
						Min: 10	Positive: .3
END	Minimum	65	30	160	24	Max: 5 km	Negative: 1x2x2
ATD						Min: 1	Positive: .3
	Goal	100	65	750	24	Max: 200 km	Negative: 1x1x1

¹ Difference between achieved performance in 2003 and End ATD will be demonstrated via modeling & simulation.

Robotic Follower Development and Test Environment

